Implicit Scheme for Hyperbolic Conservation Laws Using Nonoscillatory Reconstruction in Space and Time

نویسندگان

  • Karthikeyan Duraisamy
  • James D. Baeder
چکیده

The efficiency of high order accurate schemes for the solution of unsteady hyperbolic conservation laws is adversely affected by time-step restrictions that arise from monotonicity requirements. When applied to the solution of problems involving discontinuities, these restrictions render conventional high order implicit time integration schemes impractical. In the present study, a new single step second order implicit scheme that uses nonoscillatory reconstruction in space and time is presented. Both the spatial and temporal limiters are dependent on the evolving solution, and this nonlinearity allows for a circumvention of total variation diminishing bounds. Numerical results on model scalar and vector hyperbolic equations suggest that the scheme holds promise in achieving accurate and unconditionally nonoscillatory solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Jiang–Tadmor Scheme on Unstructured Triangulations

Nonoscillatory central schemes are a class of Godunov-type (i.e., shock-capturing, finite volume) numerical methods for solving hyperbolic systems of conservation laws (e.g., the Euler equations of gas dynamics). Throughout the last decade, central (Godunov-type) schemes have gained popularity due to their simplicity and efficiency. In particular, the latter do not require the solution of a Rie...

متن کامل

Fourth-Order Nonoscillatory Upwind and Central Schemes for Hyperbolic Conservation Laws

The aim of this work is to solve hyperbolic conservation laws by means of a finite volume method for both spatial and time discretization. We extend the ideas developed in [X.-D. Liu and S. Osher, SIAM J. Numer. Anal., 33 (1996), pp. 760–779; X.-D. Liu and E. Tadmor, Numer. Math., 79 (1998), pp. 397–425] to fourth-order upwind and central schemes. In order to do this, once we know the cell-aver...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws

In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...

متن کامل

Compact Reconstruction Schemes with Weighted ENO Limiting for Hyperbolic Conservation Laws

The simulation of turbulent compressible flows requires an algorithm with high accuracy and spectral resolution to capture different length scales, as well as nonoscillatory behavior across discontinuities like shock waves. Compact schemes have the desired resolution properties and thus, coupled with a nonoscillatory limiter, are ideal candidates for the numerical solution of such flows. A clas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2007